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Welcome

Welcome to the course materials for the Introduction to Regression Analysis with R short
course.

This course provides a comprehensive understanding of regression analysis, including the theory
behind these models, their application in R, validation techniques, and the interpretation of
results. The course begins with an introduction to linear regression models, before advancing
to the more flexible family of generalised linear models.

Topics covered as part of this course include:

• Linear regression: concepts, assumptions, application, and interpretations
• Diagnostics and validation of linear regression models
• Generalised linear models: beyond continuous outcomes
• Poisson regression: how to model counts and rates, and how this differs from linear

regression
• Best practices in communicating results of regression analysis

How to use this book

This book provides a combination of written explanations, code examples, and practical exer-
cises to allow you to practice what you have learned.

Code examples will be provided in code blocks, such as this one:

1 + 1

Code in these blocks can be copied and pasted into your R session to save time when coding.
We recommend typing the code yourself to familiarise yourself with the coding process and
use the copy option if you are really stuck!

Throughout the book, you will see colour-coded boxes which are used to highlight important
points, give warnings, or give tips such as keyboard shortcuts.
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Note

These boxes will be used to highlight important messages, supplementing the main text.

Hint

These boxes will contain useful hints, such as keyboard shortcuts, that can make your
coding life a little easier!

Warning

These boxes will contain warnings and highlight areas where you need to be more cautious
in your coding or analysis.

To make these notes as accessible as possible, they are available to view in dark mode by

toggling the button. They are also available to download as a PDF file using the

button.

All exercise solutions are available in the appendices. Please attempt the exercises yourself
first, making full use of R’s built in help files, cheatsheets (where available), and example R
code in this book. Going straight to the solutions to copy and paste the code without thinking
will not help you after the course!

Some exercises contain expandable hints, such as functions required to complete them, that
can be viewed when needed. For example:

Exercise hint

The functions you will need for this exercise are filter and count.

Data used in the course

The examples and exercises in these materials are based on real world data.

Data for this course can be downloaded from the data folder of this course’s repository.

For more information about this data, including variable descriptions and sources, see the
appendix.
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Feedback and issues

If you spot a bug or mistake in these notes, please let me know by raising an issue.

Contact Me

If you enjoyed this course and would like me to run a session for your organisation, or if you
would like to engage me as a consultant on a project get in touch at deanmarchiori.com

Licence and Attribution

I believe that science should not be behind a paywall, that is why these materials are available
for free online, in accordance with the licence.

This work is an adaptation of original work “Regression with R”. The material has been
modified, to compare against the original works see here.

Regressions with R short course by Sophie Lee is licensed under Creative Commons Attribution-
ShareAlike 4.0 International

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International.
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1 Introduction

1.1 What is a model?

Modelling is a process that is carried out across many different fields for a wide variety of
reasons. Models aim to explain complex processes in as simple terms as possible. The goal of
modelling may be to make predictions based on observed values, or to gain insights into the
process, while accounting for multiple pieces of data.

In statistics, regression models aim to quantify the relationship between an outcome and one
or more explanatory variables using a mathematical equation. They are a powerful and widely
used tool that can allow us to make inferences about these underlying relationships whilst
accounting for background factors.

1.2 Which type of regression should I use?

This course will focus mostly on linear models: models with a single continuous outcome
variable that assume the process can be described using a linear equation.

Note

This does not mean that the relationships between variables must be linear. We will see
later in the course how models can be extended to account for nonlinear relationships.

We will use linear regression models to address a research question with real-world data.
Through the course, you will learn how to fit linear regression models, interpret their out-
comes, ways in which models can be extended and improved, how to check models are valid,
and finally how to answer the initial research question using regression.

Later in the course, we will see how these linear models can be generalised to outcome variables
beyond continuous measures, and how these model interpretations differ. Finally, we will end
with a discussion about alternative models that are available beyond those covered in the
course.
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1.3 Why regression?

As with any other type of statistical analysis, we must always keep in mind the reason for
carrying it out. Research questions are an often overlooked but fundamental part of any
analysis plan, and should be fully defined before we carry out any analysis, or even collect any
data!

Note

Research questions should be clear, concise and answerable! For a more detailed introduc-
tion to research question generation, including the PICO approach and worked examples,
check out these notes.

Throughout most of this course, we will be trying to answer questions about penguins in the
Palmer Archipelago, Antarctica. Our research question for this course will be:

Is body mass of penguins in the Palmer Archipelago related to their flipper size?

1.4 Notes on R coding style

To ensure that this course is as useful as possible to those attending, all theory will be supple-
mented with worked example using the R programming language. If you have never used R
before, please refer to the setup instructions at the end of these materials.

There are many approaches to coding within R. In this course, we will be using the tidyverse
approach. This approach requires the tidyverse suite of packages to be installed and loaded
into the current R session, which we will cover in the next chapter.
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2 Preparing for linear regression

2.1 Setting up R

To get started, ensure you have a recent version or R and RStudio installed.

• Step 1: Install R: To install R head to https://cran.rstudio.com/ and follow the
instructions for your operating system.

• Step 2: Install RStudio: Next, install RStudio Desktop IDE at https://posit.co/
download/rstudio-desktop/.

2.1.1 Packages

To install the required packages, we run the install.packages("packagename") function.

# Install the required R packages for our analysis (first time use only)
install.packages("tidyverse")
install.packages("palmerpenguins")
install.packages("Metrics")
install.packages("car")
install.packages("skimr")
install.packages("AER")
install.packages("here")

Note

The command install.packages() is only required the first time loading a new package
or following any substantial updates. The library() command must be run every time
you start an R session. To save potential issues arising from unloaded packages, put any
library() commands at the beginning of any script file.

You should be able to now run the following commands:
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# Load the installed packages at the start of each session
library(tidyverse)
library(palmerpenguins)
library(Metrics)
library(car)
library(skimr)
library(AER)
library(here)

2.2 Loading the data

From our research question, we know that we require data about penguins in the Palmer
Archipelago in Antarctica, and that this data must contain information about their body
mass and flipper size. This data can be loaded into R using the {palmerpenguins} package.
More information about the data and its collection can be found on the package website or
the original publication.

Figure 2.1: Artwork by @allison_horst

While most data will be contained in some external file, in this case the data set is available
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within the palmerpenguins R package itself. First we load the R package and then we can
load the required dataset called penguins into our session using the data() function.

library(palmerpenguins) 1

data(penguins, package = "palmerpenguins") 2

1 Load the package into the current session of R.
2 Load the penguin data from this package to our environment.

When loading any data into R, we must run some checks to ensure it has been read in correctly.
This includes checking all variables we expect are present, variable names are in a tidy format,
and that variables have been recognised as the correct type.

Tip

Variable names should contain only lower case letters, numbers and underscores _. They
should be clear and descriptive. If you are reading data from a particularly messy source,
the janitor R package contains the clean_names function that converts existing variable
names into a ‘tidy’ alternative.

View(penguins) 1

1 Preview the dataset in RStudio. Note: Captial V

names(penguins) 2

str(penguins) 3

2 Return variable names.
3 Display the structure of the data, including the object type, variable types, and a preview

of each variable.

[1] "species" "island" "bill_length_mm"
[4] "bill_depth_mm" "flipper_length_mm" "body_mass_g"
[7] "sex" "year"
tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
$ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
$ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
$ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
$ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
$ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
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$ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
$ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
$ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

The penguins dataset contains observations made on 344 penguins. There are 8 variables in
the data, including body mass and flipper length, which would need to be included in our final
model to answer our research question.

The data consists of a mixture of numeric, binary (sex) and nominal (species, island)
variables which appear to be correctly specified within R.

Note

If the data contains ordered categorical variables, ensure they are recognised as factor
with the correct order assigned. If this is not the case by default, correct this before
proceeding, using the mutate function to add the converted variable and the factor
function with levels defined in the correct order.

2.3 Exploring the data

When we are sure that the data have been read in correctly and tidied into a useable format,
we can begin to explore the data. Data exploration can include

• Data visualisations, used to identify potential outliers, check variable distributions, etc.
• Summarising variables in the sample, to quantify aspects of the variables such as the

center and spread (for numeric variables) or the distribution of observations between
groups (for categorical variables)

• Quantifying bivariate relationships and differences between groups, using values such as
abolute or relative differences, and correlation coefficients

Although data exploration will not allow us to answer the research question, it is a necessary
step in the analysis process to build the best possible model. It allows us to identify potential
issues that may arise before we encounter them.

2.3.1 Data visualisation

Data visualisation can be an effective method of exploring the data and generating hypotheses.
In our example, we are interested in understanding the relationship between penguin’s body
mass and flipper size. Therefore, it makes sense to begin by visualising these variables. As
both variables are continuous, we can use a histogram to visualise them:
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Warning

From this point on, we will be using the {ggplot2} package which is part of {tidyverse}
to generate visualisations. Make sure you have loaded the {tidyverse} package to your
current session of R using code from the previous section.

ggplot(data = penguins) +
geom_histogram(aes(x = body_mass_g)) +
labs(x = "body mass (g)") + 1

theme_light(base_size = 12) 2

ggplot(data = penguins) +
geom_histogram(aes(x = flipper_length_mm)) +
labs(x = "flipper length (mm)") +
theme_light(base_size = 12)

1 Add a tidier label to the x-axis
2 Change the default theme and ensure text is at least 12pt in size.

These histograms show that neither variable have any outliers of concern. The flipper length
variable follows a bi-modal distribution, suggesting that there may be groupings in the data
that may be important to explain differences in the sample. The outcome variable, body mass,
follows a slightly positively skewed distribution.

Note

There is no requirement that our outcome must follow a normal distribution. A normal
distribution is a naturally occurring distribution in many settings, this is why we often
use this as a comparison.

We may also want to visualise the relationship between body mass and flipper length in our
sample to generate a hypothesis regarding the answer to our research question. A scatterplot
is an appropriate visualisation to investigate the relationship between two numeric variables:

ggplot(data = penguins) +
geom_point(aes(y = body_mass_g, x = flipper_length_mm)) + 1

labs(y = "body mass (g)", x = "flipper length (mm)") +
theme_light(base_size = 12)

1 The outcome variable should be displayed on the y-axis, the explanatory variable on the
x-axis.
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Figure 2.4: Scatterplot showing the relationship between penguins’ body mass and flipper
length

The scatterplot shows a strong, positive, linear relationship between body mass and flipper
length: as flipper length increases, body mass tended to also increase.

2.3.2 Summarising trends

Summary statistics are useful for quantifying different aspects of a sample. As they relate only
to the sample, they cannot make inferences about a target population, nor can they answer our
research question. They can be used in data exploration though to quantify trends between
variables and differences between categories to generate hypotheses about how we may answer
our research question.

We saw in Figure 2.4 that there was a strong, linear relationship between penguins’ body
mass and flipper length. This relationship can be quantified using Pearson’s correlation
coefficient, a measure of linear association between numeric variables.

Note

Correlation coefficients take values between -1 and 1, with 0 representing no association
and positive/negative results representing positive/negative associations. The closer the
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result is to ± 1, the stronger an association is.

cor(penguins$body_mass_g, penguins$flipper_length_mm,
use = "complete.obs"

) 1

1 As there are missing values in the penguins dataset, we must specify the function use only
complete observations to avoid an NA result.

[1] 0.8712018

As expected, there is a very strong, positive association between body mass and flipper length.
Correlation coefficients can be presented with p-values to make inferences on a target pop-
ulation. However, they provide very little information about the nature of the relationship
between variables, for example the magnitude of the relationship.

That is where linear regression comes in!

Exercise 1

Using appropriate visualisations, investigate whether there are other variables that may explain
differences in body mass. Consider whether any of these variables may be confounding the
relationship between body mass and flipper length, and whether they should be included in
the model.

Exercise hint

Consider changing the colour of points in Figure 2.4 to investigate whether the relation-
ship between body mass and flipper length differs between species or sex.
Replace flipper length with other continuous variables to consider whether they may also
contribute to differences in body mass.
Use facet_wrap to create plots facetted by categorical variables in the data to compare
relationships without overlapping points.
If you are REALLY stuck, an example solution can be found here.

16
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3 Linear regression

Linear regression aims to explain the relationship between a single continuous outcome variable
and one (or more) explanatory variable(s).

It does this by fitting a line (or plane) that best models the relationship between the outcome
variable and the explanatory variables.

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜖 (3.1)

In this equation, 𝑌 is the outcome being modelled, 𝑋𝑖 are explanatory variables, and 𝛽𝑖 are
known as regression coefficients. 𝜖 is the error term and accounts for the difference between
our observed values of the outcome variable and our model.

Note

As with many other areas of statistics, you may hear some of the elements of a regression
model referred to by different names. These all have the same meanings and can be used
interchangeably.
The outcome variable may also be referred to as the dependent or response variable.
Explanatory variables are also known as independent or predictor variables, or covariates.

3.1 Simple linear regression

Simple linear regression refers to a model with a single continuous outcome and a single
explanatory variable. The regression model will assume the relationship between the outcome
𝑌 and explanatory variable 𝑋:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝜖 (3.2)

The regression model that we will fit takes the form:

̂𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 (3.3)
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This represents the equation of a straight line, where 𝛽0 is the intercept and 𝛽1 is the gradient.
The results of this linear regression model will provide the equation of the line of best fit.

We can imagine many straight lines through our data. How do we know which one best models
the relationship?
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Linear regression works by measuring the distance between each point and its ‘predicted’ value
on the line of best fit. This distance is known as a residual. If we square this distance for each
record and sum them all up, we get the sum of squared residuals. The choice of 𝛽0 and 𝛽1
that gives us a line that minimizes the sum of squared residuals is our ‘best’ fitting line. The
full mathematical derivation of this is in the appendix however we don’t need to do this by
hand. In the next section we will use R to calculate the optimal values of 𝛽0 and 𝛽1.
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3.2 Fitting a simple linear regression in R

To fit a simple linear regression to our data in R, we use the lm() function and return the
model results using summary().

The lm() function takes the form of a formula lm(response ~ explantory)

lm_flipper <- lm(body_mass_g ~ flipper_length_mm, data = penguins) 1

summary(lm_flipper) 2

1 First, we define the regression model equation.
2 Summary provides model output, including coefficient estimates, p-values, and other model

summaries.

Call:
lm(formula = body_mass_g ~ flipper_length_mm, data = penguins)

Residuals:
Min 1Q Median 3Q Max

-1058.80 -259.27 -26.88 247.33 1288.69
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5780.831 305.815 -18.90 <2e-16 ***
flipper_length_mm 49.686 1.518 32.72 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 394.3 on 340 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.759, Adjusted R-squared: 0.7583
F-statistic: 1071 on 1 and 340 DF, p-value: < 2.2e-16

There is a lot of information given here, a quick summary of the important points (for now)
are:

• (Intercept): this returns the estimate of 𝛽0 from Equation 3.3, the expected value
of the outcome where all covariates are 0. Often, the intercept value will not have
a meaningful interpretation. For example, here it tells us the expected body mass of
penguins with flipper length 0mm is [-5780.83g]

• flipper_length_mm: this returns the estimate of 𝛽1 from Equation 3.3, the gradient.
This can interpreted as the expected change in the outcome for every unit increase of
the associated covariate. In this example, penguins’ body mass is expected to be 49.69g
higher for every millimeter longer their flippers were.

• Pr(>|t|): the p-value associated with each coefficient estimate, testing the null hypoth-
esis of no association (𝛽𝑖 = 0). In this model, the p-value associated with 𝛽1 is so
small that it cannot be written in its entirety. Therefore we can state that there was a
statistically significant association between flipper length and body mass.

Note

<2e-16 is scientific notation for < 0.0000000000000002.

• Multiple R-squared: the 𝑅2 value represents the proportion of variance in the outcome
variable explained by the model. In this case, the proportion is 0.759 or, if we convert
it into a percentage, (0.759 × 100 =) 75.9% of the variation in body mass has been
explained by flipper length. The p-value under this estimate relates to the R-squared
value and tests the null hypothesis that R-squared = 0 (i.e. the model does not explain
any of the outcome). In this case, the p-value is too small to be printed (given as <2e-16),
indicating the model explains a significant amount of the variation in body mass.
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Note

Where there is a single continuous explanatory variable, the 𝑅2 value is the Pearson
correlation squared. If we take the square root of this value, it will give us the same as
the correlation value estimated earlier:

r_sq <- summary(lm_flipper)$r.squared

cor(penguins$body_mass_g, penguins$flipper_length_mm,
use = "complete.obs")

[1] 0.8712018

sqrt(r_sq)

[1] 0.8712018

Using the model output gives us the equation of the line of best fit:

𝑏𝑜𝑑𝑦𝑚𝑎𝑠𝑠 = −5780.83 + 49.69 × 𝑓𝑙𝑖𝑝𝑝𝑒𝑟𝑙𝑒𝑛𝑔𝑡ℎ

As the linear equation assumes an additive relationship between the outcome nad covariate,
we can use this to make estimates about differences in the outcome based on the difference in
covariate. For example, if there were two penguins and one had flippers that were 1cm (10mm)
longer, we would expect their body mass to be (49.69 × 10 =) 496.9 heavier.

This line can be added to the scatterplot to visualise the results:

ggplot(data = penguins) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g)) +
geom_abline(intercept = coefficients(lm_flipper)[1],

slope = coefficients(lm_flipper)[2],
colour = "red", linewidth = 2) +

labs(x = "flipper length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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Figure 3.1: Scatterplot of body mass and flipper length with a line of best fit added

To obtain confidence intervals for the coefficient estimates, use the confint function:

confint(lm_flipper) 1

1 By default, this returns the 95% confidence interval. This can be adjusted using the level
argument. For example, level = 0.9 would return the 90% confidence interval.

2.5 % 97.5 %
(Intercept) -6382.35801 -5179.30471
flipper_length_mm 46.69892 52.67221

The 95% confidence interval for the flipper length coefficient it [46.7, 52.67]. Therefore we
would expect the true effect of flipper length on body mass to be between 46.7 and 52.67 95%
of the time under repeated sampling and modelling.

Note

We cannot make any causal statements about increases in flipper length causing increases
in body mass as there may be underlying factors confounding these results.
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3.3 Multiple linear regression

Multiple, or multivariable, linear regression is a powerful extension which allows models to take
account of other observed variables. This is important as confounding variables can cause
misleading results where they mask or even create spurious associations between variables.

Although the previous model appears to explain a large proportion of the variation in body
mass, we want to ensure that this association is not influenced by other variables. For example,
we may wish to account for differences in species which is likely to be associated with body
mass:

ggplot(data = penguins) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g,

colour = species)) +
scale_colour_brewer(palette = "Dark2") +
labs(x = "flipper length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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Figure 3.2: Scatterplot investigating the relationship between body mass, flipper length, and
species in penguins.

The scatterplot clearly shows that species is highly associated with both body mass and flipper
length, making it a potential confounding variable, and therefore a variable we should consider
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including in our model. As species is a categorical variable, we must include it into the model
as dummy variables.

3.3.1 Dummy variables

Dummy variables take the value 1 or 0, with 1 representing inclusion in a group. Categorical
variables require one less dummy variable than the number of categories the variable represents
to be included in a regression model. For example, binary variables require one dummy variable,
the species variable requires two. The category which does not have an associated dummy
variable is implicitly included in the model as the reference group.

For example, the species variable would be converted from a single nominal variable to two
dummy variables:

species chinstrap gentoo
Gentoo 0 1
Gentoo 0 1
Adelie 0 0
Adelie 0 0
Adelie 0 0
Gentoo 0 1
Adelie 0 0
Adelie 0 0
Adelie 0 0
Adelie 0 0

R converts factor variables into dummy variables automatically when they are included in
the model formula. It is important to check that variables are classified as factor before
adding them to the model.

class(penguins$species)

[1] "factor"

levels(penguins$species)

[1] "Adelie" "Chinstrap" "Gentoo"

24



The class function returns the type of variable and levels lists the levels of factor variables
in the order that they have been specified. R uses the first level of a factor variable as the
reference group in a linear model. To change this order, we can use the fct_relevel function
from tidyverse’s forcats package. For example, if we want to set the Gentoo species as the
reference group, we would use the following:

penguins_new <- mutate(penguins,
species_gentoo = fct_relevel(species, "Gentoo"))

levels(penguins_new$species_gentoo)

[1] "Gentoo" "Adelie" "Chinstrap"

Note

The choice of reference group depends on the data being analysed. If there is a clear
reference, for example some control group that we would like to compare all others to,
this should be set as the first level. If there is no clear choice of reference, sometimes
people choose the largest group.

The factor is then added into the model formula within the lm function:

lm_flipper_spec <- lm(body_mass_g ~ flipper_length_mm + species,
data = penguins)

summary(lm_flipper_spec)

Call:
lm(formula = body_mass_g ~ flipper_length_mm + species, data = penguins)

Residuals:
Min 1Q Median 3Q Max

-927.70 -254.82 -23.92 241.16 1191.68

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4031.477 584.151 -6.901 2.55e-11 ***
flipper_length_mm 40.705 3.071 13.255 < 2e-16 ***
speciesChinstrap -206.510 57.731 -3.577 0.000398 ***
speciesGentoo 266.810 95.264 2.801 0.005392 **
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 375.5 on 338 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.7826, Adjusted R-squared: 0.7807
F-statistic: 405.7 on 3 and 338 DF, p-value: < 2.2e-16

The output contains two additional coefficient estimates (one for each of the dummy variables).
The updated linear equation estimated from this model is as follows:

𝑏𝑜𝑑𝑦𝑚𝑎𝑠𝑠 = −4031.48 + 40.71 × 𝑓𝑙𝑖𝑝𝑝𝑒𝑟𝑙𝑒𝑛𝑔𝑡ℎ + −206.51 × 𝑐ℎ𝑖𝑛𝑠𝑡𝑟𝑎𝑝 + 266.81 × 𝑔𝑒𝑛𝑡𝑜𝑜

Notice that the coefficient estimate for flipper length has changed. This is because coefficient
estimates in multiple regression models give the estimated change in the outcome per unit
increase in the associated covariate after adjusting for everything else in the model. Therefore,
body mass is expected to increase by 40.71 for every 1mm increase in flipper length after
adjusting for species differences.

Coefficients associated with dummy variables give the average difference between that group
and the reference group, assuming all other variables are equal. For example, Gentoo penguins
with the same flipper length as an Adelie penguin were expected to weigh 266.81 more on
average.

If we were to visualise this, dummy variables add parallel lines of best fit, one for each group:

ggplot(data = penguins) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g, colour = species)) +
geom_abline(intercept = coefficients(lm_flipper_spec)[1], 1

slope = coefficients(lm_flipper_spec)[2],
colour = "#1B9E77", linewidth = 2) +

geom_abline(intercept = (coefficients(lm_flipper_spec)[1] + 2

coefficients(lm_flipper_spec)[3]),
slope = coefficients(lm_flipper_spec)[2],
colour = "#D95F02", linewidth = 2) +

geom_abline(intercept = (coefficients(lm_flipper_spec)[1] + 3

coefficients(lm_flipper_spec)[4]),
slope = coefficients(lm_flipper_spec)[2],
colour = "#7570B3", linewidth = 2) +

scale_colour_brewer(palette = "Dark2") +
labs(x = "flipper length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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1 The equation of the line for Adelie penguins will be body mass = -4031.48 + 40.71 × flipper
length + -206.51 × 0 + 266.81 × 0 = -4031.48 + 40.71 × flipper length

2 The equation of the line for Chinstrap penguins will be body mass = -4031.48 + 40.71 ×
flipper length + -206.51 × 1 + 266.81 × 0 = (-4031.48 + -206.51) + 40.71 × flipper
length

3 The equation of the line for Gentoo penguins will be body mass = -4031.48 + 40.71 ×
flipper length + -206.51 × 0 + 266.81 × 1 = (-4031.48 + 266.81) + 40.71 × flipper
length
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Figure 3.3: Scatterplot of body mass, flipper length and species, with lines of best fit added

All three coefficients had very low p-values and are therefore significantly different from 0,
or no association. We can obtain the confidence intervals for the coefficient estimates using
confint:

confint(lm_flipper_spec)

2.5 % 97.5 %
(Intercept) -5180.50685 -2882.44693
flipper_length_mm 34.66468 46.74612
speciesChinstrap -320.06672 -92.95352
speciesGentoo 79.42513 454.19408
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Notice that none of these confidence intervals contain 0, supporting the p-values that we
are not compatible with no association between these variables and body mass at the target
population level.

Warning

When including categorical variables, we must include all associated dummy variables or
none. This is the case even when some coefficients are considered significant and some
are not.

3.4 Model comparisons

When choosing the best possible model to address a research question, the aim is usually to
find the most parsimonious model for the job. That means the simplest model to explain as
much as possible. Model choice should first and foremost be driven by the motivation for the
analysis (the research question), our prior knowledge of what other factors are important, and
common sense based on preliminary checks. Model choice should not be determined solely by
p-values.

There are a number of tools available to help us select the most parsimonious model but these
should be considered after motivation, prior knowledge and common sense.

3.4.1 Adjusted R-squared value

The Multiple R-squared value provided by the summary() function provides a measure of
the proportion of the variation of the outcome explained by the model. As we add covariates
to the model this value will increase, even by a tiny amount, regardless of whether the model
addition is ‘worthwhile’. That is why the Adjusted R-squared value is also provided.

The Adjusted R-squared penalises the R-squared value based on the complexity of the model:
the more complex a model is, the higher the penalty. Although the Multiple R-squared
increases with every model addition, the Adjusted R-squared will only increase where the
model is considered improved. Therefore, the adjusted value can be used to compare between
models to identify the most parsimonious.

We can compare the two models fitted in this section using the Adjusted R-squared to identify
the most parsimonious. The higher the Adjusted R-squared, the better the fit:

summary(lm_flipper)$adj.r.squared

[1] 0.7582837
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summary(lm_flipper_spec)$adj.r.squared

[1] 0.7807187

The model including species had a higher Adjusted R-squared and is therefore considered the
most parsimonious in this case.

Note

The Adjusted R-squared value should be used as a model comparison to identify the
most parsimonious model. When the best possible model has been chosen, the results
should be presented with the Multiple R-squared as a summary.

3.4.2 Information criterion

Another method to assess model goodness of fit is the deviance (also known as -2 log-likelihood).
This is a measure of how much a model deviates from a hypothetical full model that predicts
each point perfectly. This full model would not be useful to make inferences from as it would
only describe the sample it is based on but the deviance can compare similar models to help
find the most parsimonious.

The deviance alone is not useful as there is no value where a deviance is ‘small enough’ to
represent a good fit. However, the deviance can be transformed into a score known as an
information criterion. These provide a measure of how parsimonious models are by penalising
their deviance based on the number of variables included. If the information criterion is lower
after adding extra variables, this means the extra complexity explains enough to be worthy of
inclusion.

There are a number of information criterions available with different penalties. Two of the most
common are the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). These scores will usually give similar results but may differ slightly as they attach
different penalties (the BIC usually prefers simpler models to the AIC).

AIC(lm_flipper)

[1] 5062.855

AIC(lm_flipper_spec)

[1] 5031.523
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BIC(lm_flipper)

[1] 5074.359

BIC(lm_flipper_spec)

[1] 5050.697

The model including species had the lowest value for both information criterion, indicating
that the addition of species has improved the model enough to consider it worthwhile.

3.4.3 Prediction metrics

Root mean squared error (RMSE) and mean absolute error (MAE) are model comparison
metrics that compare model predictions to the observed values. The smaller the RMSE or
MAE, the better the model is at predicting the outcome. There are other similar metrics that
can be used on place of these, however the RMSE and MAE are useful as they give the result
on the same scale as the outcome.

As the name suggests, the RMSE is estimated by finding the root mean squared error (differ-
ence between the observed outcome, 𝑦𝑖 and the predicted outcome from the model, ̂𝑦𝑖:

√ 1
𝑛 ∑ (𝑦𝑖 − ̂𝑦𝑖)2

The MAE returns the mean absolute error between the observed and predicted outcome:

1
𝑛 ∑ |𝑦𝑖 − ̂𝑦𝑖|

Both these metrics can be estimated using the {Metrics} package in R, inputting the observed
outcome (here, body_mass_g) and the predicted outcome from the model (obtained using the
predict() function):

rmse(lm_flipper$model$body_mass_g, predict(lm_flipper))

[1] 393.1236
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rmse(lm_flipper_spec$model$body_mass_g, predict(lm_flipper_spec))

[1] 373.3325

mae(lm_flipper$model$body_mass_g, predict(lm_flipper))

[1] 313.0018

mae(lm_flipper_spec$model$body_mass_g, predict(lm_flipper_spec))

[1] 296.4359

Warning

We have extracted the observed outcome from the model object rather than the original
data. This is because there is missing data in the penguins data which is removed when
we fit the models. Using the original data will lead to variables of different length and
produce an error in the functions.

Both metrics agree that the model containing species was better at predicting the body mass
of penguins than the model just containing flipper length. Usually we would just choose one
of these metrics rather than displaying both. In most cases, they will agree, where they don’t
it is because the RMSE is more sensitive to outliers, unlike the MAE which treats all values
equally.

3.5 Model diagnostics

Before communicating the results of a model, we must ensure that the model we have used is
valid and appropriate for the data. Linear regression is a parametric method which means there
are assumptions that must be checked to ensure that the model we are using is appropriate.
Linear regression assumptions can be remembered using the LINE acronym:

• Linearity: the relationship between the (mean) outcome and explanatory variable(s) can
be described using a linear equation

• Independence: explanatory variables must be independent of one another
• Normally distributed residuals: model error terms must follow a normal distribution
• Equivalent variance: residuals must have a constant variance across all values of the

outcome (also known as heteroskedasticity)
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3.5.1 Multicollinearity

Multicollinearity occurs when one or more of the explanatory variables can be explained by
other covariates in the model. In other words, the explanatory variables are not independent
of one another. When multicollinearity exists within a model, coefficient estimates become
unstable and results may no longer be valid. The level of dependence between continuous
covariates can be quantified using the variance inflation factor (VIF).

The VIF is estimated for each covariate, 𝑋𝑖, by fitting a linear model where 𝑋𝑖 is set as
the outcome, with all other covariates included as explanatory variables. The VIF of this
coefficient is estimated using the R-squared value of that model:

𝑉 𝐼𝐹𝑖 = 1
1 − 𝑅2

𝑖

The larger the VIF, the more collinearity present in a model. For example, a VIF of 10 occurs
when 90% of the covariate is explained by other variables in the model (where 𝑅2 = 0.9).
There is no agreed level above which multicollinearity causes an issue in the model, although
5 is a common cut-off above which a VIF is considered high.

Note

Although correlation between covariates may give some indication of potential multi-
collinearity, regression is able to account for some amount of correlation. Although
correlated covariates can be included, model interpretations may become more complex
as the coefficients are estimated after adjusting for other variables in the model, often
producing unexpected results.

Where a model contains categorical variables, the generalised VIF (GVIF) can be used. How-
ever, as some categorical variables are included into a model with multiple dummy variables,
the GVIF must be adjusted to account for differences in the degrees of freedom (df). To make
GVIF comparable across variables with different degrees of freedom, we apply the correction:

𝐺𝑉 𝐼𝐹 1
2𝑑𝑓

This value is also known as the generalised standard error inflation factor (GSEIF). For numeric
or binary covariates, this is the square root of the GVIF. Therefore, the rule of thumb cut-offs
for problematic levels of multicollinearity when considering GSEIF will be the square root of
the VIF cut-offs (

√
5 = 2.236).

VIFs, GVIFs and (when the model contains categorical variables) GSEIFs are estimated in R
using the {car} package:
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library(car)

vif(lm_flipper_spec)

GVIF Df GVIF^(1/(2*Df))
flipper_length_mm 4.509154 1 2.123477
species 4.509154 2 1.457215

Both GSEIF values are below the cut-off value, indicating there is no issue with multicollinear-
ity in this model.

Note

Where there is evidence of multicollinearity in a model, one or more of the covariates
causing the issue must be removed from the model. Otherwise, coefficient estimates will
be unstable and inferential results may be invalid.

3.5.2 Residuals

The other three assumptions of linear regression can be checked using residuals, or error terms.
Residuals are calculated by finding the difference between the observed outcome from the data
and the predicted outcome using the model. Large residuals are an indication of poor model
fit and can be used to improve a model. Residuals can be obtained from a model object in R
using the resid function.
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3.5.3 Linearity

One of the major assumptions underpinning linear models is that the mean outcome can be
described as a linear equation of the covariates present in the model. Where there is only a
single numeric variable or one numeric and one categorical variable, this assumption can be
checked using a scatterplot. However, when models become more complex, we are no longer
able to check this assumption graphically.

A better approach to checking the linearity assumption of regression models is to plot a scatter-
plot of model residuals against each covariate. If the assumption of linearity is valid, residual
points should be randomly scattered around 0 without any obvious patterns. To produce these
plots, we simply extract the residuals using resid and produce a scatterplot using ggplot and
geom_point:

penguins_resid <- lm_flipper_spec$model %>% 1

mutate(residuals_flipper_spec = resid(lm_flipper_spec))

ggplot(data = penguins_resid) +
geom_point(aes(x = flipper_length_mm, y = residuals_flipper_spec)) +
labs(y = "residuals", x = "flipper length (mm)") +
geom_hline(yintercept = 0, colour = "red") + 2

theme_light(base_size = 12)
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3 Adding a reference line where residuals = 0 can help check this assumption
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ggplot(data = penguins_resid) +
geom_point(aes(x = species, y = residuals_flipper_spec)) +
labs(y = "residuals", x = "species") +
geom_hline(yintercept = 0, colour = "red") + 3

theme_light(base_size = 12)
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Both plots show residuals randomly scattered around the reference line of 0, with no patterns
in the points. This indicates that the assumption of linearity is valid in this case.

Warning

Where the assumption of normality is not appropriate, steps must be taken to resolve
this or another method must be used.
One way to overcome lack of linearity is to transform the covariate that does not adhere
to this assumption. For example, if the relationship between the outcome and a covariate
is more curved than linear, a polynomial term (𝑥2) may be considered. Be cautious when
applying transformations as this will change the interpretation of model coefficients (they
will no longer be on the same scale as the original data).
If simple transformations will not overcome a lack of linearity, or where we need coeffi-
cients to be interpretable on the data scale, we could consider generalised additive models,
an alternative statistical modelling approach that can be used to model nonlinear rela-
tionships.

3.5.4 Normally distributed residuals

A common misconception about linear regression is that the outcome variable must be normally
distributed. This is not the case, but the residuals must be. This can be easily checked using
a histogram:
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ggplot(data = penguins_resid) +
geom_histogram(aes(x = residuals_flipper_spec),

colour = "black", fill = "grey45") +
labs(x = "residuals") +
theme_light(base_size = 12)
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The histogram shows residuals follow an approximately normal distribution, centred around
0.

3.5.5 Heteroskedasticity

The final assumption to check when using linear regression is that the residuals have a constant
variance across all observations. This can be checked using a scatterplot of the residuals
against the observed outcome. We would hope to see points scattered randomly around 0. If
the variance is not constant, for example if we observe a funnel shape, we must rethink our
model:

ggplot(data = penguins_resid) +
geom_point(aes(x = body_mass_g, y = residuals_flipper_spec)) +
geom_hline(yintercept = 0, colour = "red") +
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labs(x = "body mass (g)", y = "residuals") +
theme_light(base_size = 12)
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This plot shows evidence of heteroskedasticity: as body mass increases, the variance of the
residuals also appears to increase. Therefore, this model could not be used without improve-
ments.

3.5.6 Influential observations

Another consideration when fitting regression models is the existence (and impact) of influen-
tial observations. Observations may be influential if they are outliers or behave differently to
other points, which can lead them pulling the model away from the majority of the sample.
This can lead to models that are not representative of the majority of the data.

Note

As with other outliers, influential observations should not necessarily be removed from an
analysis if they are part of the target population we would like to address. They may be
part of an underrepresented part of the population that was not captured in the random
sample.
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One of the most common measures of influence is known as Cook’s distance. Cook’s distances
provide a measure of how much the removal of each observation would change the model. The
larger the Cook’s distance, the more the observation changes the model, making the point
more influential.

There are no agreed guidelines giving a cut-off value above which an observation becomes
‘influential’ (although some have stated around 0.5). The best approach is best to plot Cook’s
distances and identify extreme values by eye. The Cook’s distance can be plotted as follows:

plot(lm_flipper_spec, which = 4)
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lm(body_mass_g ~ flipper_length_mm + species)

Cook's distance
40 315

170

By default, R returns the row number of observations it considers ‘influential’ which can then
be used to improve the model.

R uses an arbitrary method of identifying ‘influential’ observations. This means these obser-
vations are not necessarily problematic. In this case, all Cook’s distances are below 0.025,
making their level of influence very low.

R recognised rows 40, 170 and 315 as potentially influential. In some cases, viewing these rows
can give us ideas about variables that are not in the current model but explain the differences
in these observations that may improve the model:
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species island bill_length_mmbill_depth_mmflipper_length_mmbody_mass_gsex year
Adelie Dream 36.5 18.0 182 3150 female 2007
Gentoo Biscoe 46.2 14.5 209 4800 female 2007
Chinstrap Dream 49.0 19.5 210 3950 male 2008

Hint

R contains a generic plot function that returns model diagnostic plots, including residual
plots and Cook’s distance when applied to a linear model object.

Exercise 2

Using everything you have learned up to this point, use linear regression to answer the research
question posed earlier:

Is body mass of penguins in the Palmer Archipelago related to their flipper size?

Exercise hint

Explore the data to identify variables that are likely to be related to body mass that
could be confounders. This includes visualising and summarising the sameple.
Add variables into the model, using model comparisons such as the adjusted R-squared,
information criterions and RMSE/MAE to understand whether these improve the model.
When you have chosen what you consider to be the best possible model, check the linear
regression assumptions are met and present your answer.
If you are REALLY stuck, an example solution can be found here.
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4 Generalised linear models

Linear regression is a powerful tool but is only appropriate where the outcome of interest
is continuous and the residuals are normally distributed. However, we may be interested in
answering research questions about a binary outcome, or predicting a rate based on observed
variables. This is where generalised linear models (GLMs) are useful.

GLMs extend the linear regression framework to allow other types of outcomes to be modelled
using a linear equation. They are appropriate to use for any outcome that is assumed to follow
a distribution from the exponential family. The most commonly used GLMs are:

• Linear regression: continuous outcome
• Logistic regression: binary outcome
• Poisson regression: count/rate outcome
• Ordinal logistic regression: ordinal outcome
• Multinomial regression: nominal outcome

GLM generalises the linear model framework by fitting the linear model to some transformation
of the outcome. This transformation is known as the link function. Each regression type has
an associated link function, 𝑔(𝑌 ), making the updated model formula:

𝑔(𝑌 ) = 𝛽0 + 𝛽1𝑋1 + … 𝛽𝑘𝑋𝑘

Linear regression is the simplest form of GLMs as the link function is the identity function
𝑔(𝑌 ) = 𝑌 . Where another link function has been used, coefficient estimates must be trans-
formed to put them onto the same scale as the data before they are interpretable.

4.1 Generalised linear models in R

To fit a GLM in R, we use the glm() function. The model specification is the same as the
lm() function but with an optional family argument where the outcome is not continuous.

We can fit the linear model from the previous section using the following code:
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glm_penguin <- glm(body_mass_g ~ flipper_length_mm + species,
data = penguins, family = gaussian) 1

summary(glm_penguin)

1 Gaussian distribution is another term for normal distribution.

Call:
glm(formula = body_mass_g ~ flipper_length_mm + species, family = gaussian,

data = penguins)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4031.477 584.151 -6.901 2.55e-11 ***
flipper_length_mm 40.705 3.071 13.255 < 2e-16 ***
speciesChinstrap -206.510 57.731 -3.577 0.000398 ***
speciesGentoo 266.810 95.264 2.801 0.005392 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 141026.6)

Null deviance: 219307697 on 341 degrees of freedom
Residual deviance: 47666988 on 338 degrees of freedom
(2 observations deleted due to missingness)

AIC: 5031.5

Number of Fisher Scoring iterations: 2

Note

For a full list of family options, open the ?family help file.

The lm() and glm() functions will provide the same results when fitting a linear model,
although some of the output provided in the summary is slightly different (lm() will provide
the R-squared values by default, whereas glm() provides deviance and the AIC).
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4.2 Poisson regression

Poisson regression is used where the model outcome is either a count or rate. Linear regression
would not be appropriate for count data as predictions could be negative or non-integer values.
To overcome this, the model is fitted to a transformed version of the outcome. In theory, any
mathematical function could be used as a link function as long as there is an opposite function
that would return values to their original scale, making model results interpretable.

Note

We do not apply any transformation to the data, this is done by the computer when we
are fitting the model. The coefficients will be estimated in relation to the log-transformed
outcome rather than the original variable.

4.2.1 Logarithm and exponential transformations

The transformation applied to the outcome when fitting a poisson regression is the natural log
function (also known as 𝑙𝑛 or 𝑙𝑜𝑔𝑒 (log to the base 𝑒). The opposite of this transformation is
the exponential function (sometimes written as 𝑒𝑥𝑝 or 𝑒).

exp(x)

ln(x)

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0
x

y
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The natural log function is useful when dealing with counts as it takes non-negative variables
and ‘stretches’ them, allowing them to take any value between ±∞. To return to the original
data, we just apply the exponential function to the transformation:

Original values (x) ln(x) exp(x)
-0.5 - -
0.0 - -
0.5 -0.69 0.5
1.0 0 1
2.0 0.69 2
5.0 1.61 5

10.0 2.3 10
100.0 4.61 100

1000.0 6.91 1000

The exponential and natural log transformations have some interesting properties that we
must be aware of before interpreting poisson regression results. This is because model results
may need to be transformed before they can be interpreted.

For example, the exponential function takes an additive relationship and converts it into a
multiplicative one:

𝑒𝑎+𝑏 = 𝑒𝑎 × 𝑒𝑏

e.g., 𝑒5 = 𝑒2+3 = 𝑒 × 𝑒 × 𝑒 × 𝑒 × 𝑒 = (𝑒 × 𝑒) × (𝑒 × 𝑒 × 𝑒) = 𝑒2 × 𝑒3

Multiplicative relationships become exponential relationships:

𝑒𝑎×𝑏 = (𝑒𝑎)𝑏 = (𝑒𝑏)𝑎

e.g., 𝑒6 = 𝑒2×3 = 𝑒 × 𝑒 × 𝑒 × 𝑒 × 𝑒 × 𝑒 = (𝑒 × 𝑒) × (𝑒 × 𝑒) × (𝑒 × 𝑒) = (𝑒 × 𝑒)3 = (𝑒2)3

The natural log also has some important properties that we must be aware of during the
poisson regression process:

𝑙𝑛(𝑎 + 𝑏) = 𝑙𝑛(𝑎) × 𝑙𝑛(𝑏)
e.g., 𝑙𝑛(8) = 𝑙𝑛(6 + 2) = 𝑙𝑛(6) × 𝑙𝑛(2)
𝑙𝑛(𝑎 − 𝑏) = 𝑙𝑛(𝑎) ÷ 𝑙𝑛(𝑏)
e.g., 𝑙𝑛(5) = 𝑙𝑛(9 − 4) = 𝑙𝑛(9) ÷ 𝑙𝑛(4)
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4.2.2 Poisson regression for count data

To demonstrate poisson regression, we will be using data from the cancer registry and census
in the USA from 2015. This data can be downloaded from the course repository and more
information about the dataset can be found in the course appendix.

The research question we will aim to answer using this data is:

Is cancer mortality associated with poverty levels in the USA?

Regardless of what model comparison statistics find, our final model must have number of
cancer deaths as the outcome and some measure of poverty included as an explanatory vari-
able.

We begin be exploring the bivariate relationship between these variables by loading the data
and producing a scatterplot:

cancer_reg <- read_csv(here("data/cancer_reg.csv")) 1

ggplot(data = cancer_reg) +
geom_point(aes(x = poverty, y = number_death)) +
labs(x = "% of residents living in poverty",

y = "Number of cancer deaths") +
theme_light(base_size = 12)

1 This code requires the cancer_reg.csv file to be saved in a folder within your working
directory named data. If the data are saved in the working directory, remove the data/
prefix.
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The scatterplot does not appear to show any clear relationship between the poverty levels
in US counties and the number of cancer deaths. However, this may be due to the smaller
number of counties with high levels of poverty in the sample.

We can quantify the level of this relationship using a simple1 poisson regression model:

glm_cancer_pov <- glm(number_death ~ poverty, data = cancer_reg,
family = poisson)

summary(glm_cancer_pov)

Call:
glm(formula = number_death ~ poverty, family = poisson, data = cancer_reg)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.1946575 0.0114207 454.85 <2e-16 ***
poverty -0.0243758 0.0006472 -37.66 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1simple = only one covariate
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 74152 on 526 degrees of freedom
Residual deviance: 72668 on 525 degrees of freedom
AIC: 75821

Number of Fisher Scoring iterations: 5

The model results show a significant association between the number of cancer deaths and
rates of poverty in counties. The coefficient estimates from the model output can be used to
construct the linear equation fit to this data:

ln(number of deaths) = 5.19 − 0.02 × 𝑝𝑜𝑣𝑒𝑟𝑡𝑦

However, we are not able to interpret these effects on this scale, we must back-transform the
outcome using the exponential function. If we apply the exponential function to the left-hand
side of this equation, we must do the same to the right side to ensure equality. Therefore, the
model equation becomes:

number of deaths = 𝑒5.19−0.02×𝑝𝑜𝑣𝑒𝑟𝑡𝑦

= 𝑒5.19 × 𝑒−0.02×𝑝𝑜𝑣𝑒𝑟𝑡𝑦

= 180.31 × 0.98𝑝𝑜𝑣𝑒𝑟𝑡𝑦

The transformed intercept value, 180.31, is the expected number of cancer deaths where no
one in the county lived in poverty.

The coefficient associated with poverty level, 0.98, now describes the multiplicative relation-
ship between poverty and cancer deaths. For every 1 percentage point increase in poverty,
the number of deaths is expected to decrease (as the transformed coefficient is below 1, no
difference). This decrease can be converted into the percentage change to make it easier to
communicate:

First, we find the difference between the multiplicative change and no difference (1 in this
case): 1 - 0.9759 = 0.0241.

This represents the proportion change in the outcome. To convert a proportion into a percent-
age, we simply multiply it by 100%:
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0.0241 × 100% = 2.41 %.

For every 1 percentage point increase in poverty, the number of deaths is expected to decrease
by 2.41 %. To find the expected difference in counties where the poverty level was 10% higher,
we exponentiate the transformed coefficient by itself 10 times and convert it into a percentage
change:

0.9759 10 = 0.7837

1 - 0.7837 = 0.2163

0.2163 × 100% = 21.63 %.

The confidence intervals for coefficient estimates can be obtained using the confint function
we used before. However, the interval will be presented on the transformed scale and so we
need to apply the exponential function before interpreting the results:

round(exp(confint(glm_cancer_pov)), 2)

2.5 % 97.5 %
(Intercept) 176.31 184.39
poverty 0.97 0.98

Therefore, we can state the true effect of number of deaths in a county with a poverty level 1
percentage point higher will be between 0.97 and 0.98 at a 95% level of confidence.

4.3 Poisson regression for rates

The previous model showed there was a negative relationship between the number of deaths
from cancer in the US and poverty. This is the opposite of what we would expect to see and
could be an indication that there are confounding factors. As with linear regression, we must
consider whether there are background factors that may be distorting the results of our model
that must be included to obtain valid results.

The counties in our sample vary greatly in size:
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Using the number of deaths as the outcome does not account for the differences in county
populations. The higher the population, the more people that are at risk. Failure to adjust
for this means we may just be measuring the relationship between poverty and population.

To avoid masking the relationship we are interested in modelling, we can introduce the pop-
ulation into the model. This can be done by modelling the rate of deaths rather than the
raw count. We don’t aim to model the rate of death directly, we still leave our response as
number_death however we add an ‘offset’ term to the right hand side. For this we will use
log(population_2015).

glm_mort_rate <- glm(number_death ~ poverty + offset(log(population_2015)),
data = cancer_reg,
family = "poisson"

)

summary(glm_mort_rate)

Call:
glm(formula = number_death ~ poverty + offset(log(population_2015)),

family = "poisson", data = cancer_reg)
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.3846438 0.0125010 -510.73 <2e-16 ***
poverty 0.0105205 0.0007165 14.68 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4101.4 on 526 degrees of freedom
Residual deviance: 3888.2 on 525 degrees of freedom
AIC: 7041.7

Number of Fisher Scoring iterations: 4

Note

The offset term does not have a coefficient estimated by the model as it is considered a
constant with a coefficient of 1.

We can view the new model implicitly modelling the rates of death as follows:

ln (number of deaths) = −6.38 + 0.01 × 𝑝𝑜𝑣𝑒𝑟𝑡𝑦 + ln (population 2015)

ln(number of deaths
population 2015 ) = −6.38 + 0.01 × 𝑝𝑜𝑣𝑒𝑟𝑡𝑦

Although this model uses the same data as the first, the coefficient of the model now shows
a positive association between poverty levels and mortality rate (as poverty increases by a
percentage point, the mortality rate is expected to increase 𝑒0.0105×1 = 1.0106. This indicates
that the previous model, using count as the outcome, was modelling differences in population
rather than cancer deaths.

The 95% confidence interval for poisson models of rates is produced in the same way as those for
counts. Remember to transform the interval using the exponential function before interpreting
these values.

round(exp(confint(glm_mort_rate)), 2) 1

1 I have rounded the interval to ensure the output is tidier.
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2.5 % 97.5 %
(Intercept) 0.00 0.00
poverty 1.01 1.01

4.4 GLM model diagnostics

Each form of generalised linear model has a different set of assumptions that must be checked
to ensure results are valid. The assumptions will depend on the link function that is applied
to the outcome, and the distribution that the outcome is expected to come from (for linear
models, this is the normal distribution, for poisson models it is poisson, etc.).

For example, GLMs have a linearity assumption, but that the transformed outcome can be
described using a linear equation containing covariates in the model.

4.4.1 Poisson regression assumptions

As with linear models, observations used to fit a poisson model must be independent of one
another, and explanatory variables included in the model must not be dependent on one
another. However, there are some important differences between assumptions made about the
model response and residuals.

One of the main differences between the assumptions underpinning linear and poisson regres-
sion models is that the count (or rate) outcome is assumed to follow a poisson distribution. A
key assumption of the poisson distribution is that the mean and variance are equal. Therefore,
the assumption that residuals have a constant variance is not appropriate.

Rather than considering the raw residuals (the difference between the observed and expected
outcomes) for poisson models, Pearson residuals and deviance residuals give more insight into
model validity and fit.

4.4.1.1 Pearson residuals

Pearson residuals (𝑟𝑝
𝑖 ) standardise raw residuals by dividing the difference between observed

(𝑦𝑖) and predicted ( ̂𝑦𝑖) outcomes by the standard deviation. For poisson regression, if the model
(and poisson distribution assumption) is valid, the standard deviation will be the square root
of the mean, or predicted outcome of the model:

𝑟𝑝
𝑖 = 𝑦𝑖 − ̂𝑦𝑖

√ ̂𝑦𝑖
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If the outcome (and therefore the residuals) followed a poisson distribution, we would expect
these standardised Pearson residuals to follow a normal distribution, with a constant variance,
and a mean of 0.

In R, the Pearson residuals can be calculated and plotted using the residuals function and
specifying the type argument:

pearson_resid <- tibble(glm_mort_rate$model) %>%
mutate(residuals = residuals(glm_mort_rate, type = "pearson"),

id = row_number(.))

ggplot(data = pearson_resid) +
geom_point(aes(y = residuals, x = id)) +
theme_light(base_size = 12)
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ggplot(data = pearson_resid) +
geom_histogram(aes(x = residuals), colour = "black", fill = "grey45") +
theme_light(base_size = 12)
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Both plots show a ‘funnel’ shape, showing that the poisson assumption is not valid for this
data. We can refer to the data to try and examine why these observations are not as well
represented by the model as other points.

4.4.1.2 Deviance residuals

The deviance was introduced in Section 3.4.2 as a model comparison tool. Deviance quantifies
how much the current model deviates from a hypothetical (and totally useless) full model.
The lower the deviance, the better the model fits the sample data. The deviance alone is not
particularly useful as the full model overfits the sample and is not able to provide inferences to
the target population it is drawn from. However, it can be combined with other information
to give insights about the model fit.

Deviance residuals are estimated by multiplying the square root of the deviance contribution,
𝑑𝑖 of an observation by

• +1 if the observed count is higher than the predicted count,
• 0 if the observed and predicted counts are equal, or
• -1 if the observed count is lower than the predicted count.

For poisson regression, the deviance contribution for observation 𝑖 is:
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𝑑𝑖 = 2 [𝑦𝑖𝑙𝑜𝑔 (𝑦𝑖
̂𝑦𝑖
) − (𝑦𝑖 − ̂𝑦𝑖)]

Large deviance residuals indicate that the model is not fitting an observation well. Plotting
these deviance residuals can help identify potential outliers, influential values, or could help
improve a model by highlighting a group that is not represented by the current model. In R,
the deviance residuals are calculated (and plotted) as follows:

dev_resid <- tibble(glm_mort_rate$model) %>%
mutate(residuals = residuals(glm_mort_rate, type = "deviance"),

id = row_number(.))

ggplot(data = dev_resid) +
geom_point(aes(y = residuals, x = id)) +
theme_light(base_size = 12)
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ggplot(data = dev_resid) +
geom_histogram(aes(x = residuals), colour = "black", fill = "grey45") +
theme_light(base_size = 12)
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Deviance residuals produce similar results as Pearson residuals when using poisson regres-
sion. However, they provide a more generalised model check for regression types other than
poisson.

Note

In reality, we would not use both the Pearson and deviance residuals when checking
a regression model. The choice of residual depends on the intention of the check and
whether we are communicating the results. The deviance residuals are presented here to
give a generalised tool that can be applied to other GLMs.

4.4.2 Equidispersion

Both the Pearson and deviance residual plots showed non-equal variance of residuals. This
could be an indication of overdispersion. Overdispersion occurs when the poisson assumption
that the mean and variance of the outcome are equal is not valid. When this is the case, other
more flexible models may be required.

To test for overdispersion, we can use the dispersiontest function which is part of the {AER}
package in R. This function tests the hypothesis that the outcome mean (𝜇) and variance
(𝑣𝑎𝑟(𝑦)) are equal, against an alternative that the variance takes the form:
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𝑣𝑎𝑟(𝑦) = (1 + 𝛼) × 𝜇 = 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 × 𝜇

The output provides an estimate of the dispersion parameter (which would take the value 0 if
the mean and variance are equal) and a p-value testing the null hypothesis of equidispersion.

library(AER)

dispersiontest(glm_mort_rate, trafo = 1)

Overdispersion test

data: glm_mort_rate
z = 7.6555, p-value = 9.627e-15
alternative hypothesis: true alpha is greater than 0
sample estimates:

alpha
6.235632

The results show clear overdispersion. On average, the variance is 7.24 times higher than the
mean. The p-value is too small to be printed in its entirety, indicating that this overdispersion
is statistically significant.

A poisson model would not be appropriate in this case. Other models, such as a quasipois-
son or negative binomial model, which allow for unequal mean and variance, may be more
appropriate.

Exercise 3

Using the data, fit an appropriate model to answer the research question:

Is cancer mortality associated with poverty levels in the USA?

Ensure that the mode contains any variables you consider necessary, and check that it is valid
before using it to answer the research question.

Exercise hint

As with previous questions, plot the outcome and variables you believe may be important
covariates to generate hypotheses about best fitting models.
Use model comparison techniques such as information criterions and prediction errors to

56



identify the most parsimonious model, ensuring that all variables that need to be in the
model are present.
Test model assumption, including checking for multicollinearity using vif, plotting Pear-
son residuals, and checking for equidispersion.
If the model is still overdispersed, try using family = quasipoisson instead, which
assumes the variance is proportional to the mean, rather than equal. The summary of
this model will include a dispersion parameter estimate, but model output is interpreted
in the same way as poisson regression.
If you are REALLY stuck, an example solution can be found here.
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5 Discussion

Generalised linear models are powerful statistical tools that can be applied to a wide range of
data and situations. The choice of the most appropriate model to address a research question
will depend on the type of outcome, but also:

• The intention of the model: which variables must be included to answer the research
question?

• Common sense and background knowledge: what do we know about the context of the
data and what are the known confounders?

• Parsimony: which model provides the simplest solution to our problem without losing
any information?

Do not choose a regression model solely based on p-values!!

All models must be checked to ensure that any assumptions are met and the results are
valid. All GLMs require observations to be independent of one another. This means that
there is no clustering, repeated measures, or autocorrelation within the data. Where this
assumption is not valid, multilevel models (also known as mixed effect, random effect, GLMMs,
or hierarchical models) should be considered.

GLMs assume that the relationships between covariates and the (link-transformed) outcome
are linear. Where this is not the case, covariates can be transformed before they are included
into the model, for example polynomial regression. Where the relationship is more complex
or unknown, consider generalised additive models (GAMs), which are able to for non-linear
data.

Finally, note that the models shown in these notes and exercise solutions are not definitive.
Choice of model is often subjective and context-specific.
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A Data description

A.1 Palmer Penguins

Information about this data are available from palmerpenguins

data(penguins, package = "palmerpenguins")

skimr::skim(penguins)

Table A.1: Data summary

Name penguins
Number of rows 344
Number of columns 8
_______________________
Column type frequency:
factor 3
numeric 5
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
species 0 1.00 FALSE 3 Ade: 152, Gen: 124, Chi:

68
island 0 1.00 FALSE 3 Bis: 168, Dre: 124, Tor: 52
sex 11 0.97 FALSE 2 mal: 168, fem: 165

Variable type: numeric
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skim_variable n_missingcomplete_ratemean sd p0 p25 p50 p75 p100 hist
bill_length_mm 2 0.99 43.92 5.46 32.1 39.23 44.45 48.5 59.6 �����
bill_depth_mm 2 0.99 17.15 1.97 13.1 15.60 17.30 18.7 21.5 �����
flipper_length_mm 2 0.99 200.92 14.06 172.0 190.00 197.00 213.0 231.0 �����
body_mass_g 2 0.99 4201.75 801.95 2700.0 3550.00 4050.00 4750.0 6300.0 �����
year 0 1.00 2008.03 0.82 2007.0 2007.00 2008.00 2009.0 2009.0 �����

A.2 Cancer Registry

cancer_reg <- readr::read_csv(here::here("data/cancer_reg.csv"))

Rows: 527 Columns: 20
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): County, state, group
dbl (17): mortality_rate, number_death, cancer_incidence, number_cases, popu...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

skimr::skim(cancer_reg)

Table A.4: Data summary

Name cancer_reg
Number of rows 527
Number of columns 20
_______________________
Column type frequency:
character 3
numeric 17
________________________
Group variables None

Variable type: character
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skim_variable n_missing complete_rate min max empty n_unique whitespace
County 0 1 16 38 0 527 0
state 0 1 4 14 0 48 0
group 0 1 7 7 0 3 0

Variable type: numeric

skim_variablen_missingcomplete_ratemean sd p0 p25 p50 p75 p100 hist
mortality_rate 0 1 181.19 26.75 66.30 163.35 181.80 197.75 292.50 �����
number_death 0 1 119.08 155.31 3.00 28.00 58.00 141.50 914.00 �����
cancer_incidence 0 1 450.87 50.24 211.10 421.55 453.55 487.15 630.40 �����
number_cases 0 1 409.08 568.85 6.00 76.00 158.00 453.50 2841.00 �����
population_2015 0 1 59408.1390106.981130.00 11343.5025594.0064463.00734871.00�����
age 0 1 41.00 5.02 22.30 38.10 40.90 43.80 56.60 �����
income 0 1 45918.6811779.1823047.0038017.5044065.0051414.50108477.00�����
poverty 0 1 17.53 6.61 4.20 12.60 16.70 21.30 45.10 �����
household 0 1 2.47 0.46 0.02 2.37 2.50 2.63 3.97 �����
married 0 1 51.56 6.91 23.10 48.10 52.30 56.30 69.20 �����
unemployed 0 1 8.09 3.25 0.70 5.90 8.00 9.70 22.60 �����
medicare 0 1 19.63 5.91 2.60 15.50 19.40 23.45 41.40 �����
white 0 1 83.10 17.16 11.01 75.81 90.24 95.41 100.00 �����
black 0 1 10.36 16.07 0.00 0.68 2.28 12.45 84.87 �����
asian 0 1 0.99 1.67 0.00 0.24 0.52 1.13 21.28 �����
BirthRate 0 1 5.58 1.98 0.00 4.54 5.38 6.42 17.88 �����
random_n 0 1 0.19 0.10 0.00 0.10 0.19 0.28 0.35 �����
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B Exercise solutions

All the exercise solutions here are suggestions and are not exhaustive. Data exploration and
model building are often subjective processses which are determined by a person’s prior expe-
rience and the context of a project.

B.1 Exercise 1

Using appropriate visualisations, investigate whether there are other variables that may explain
differences in body mass. Consider whether any of these variables may be confounding the
relationship between body mass and flipper length, and whether they should be included in
the model.

Solution

Body mass and flipper length are both likely to differ between penguin species. Changing the
colour of points for each species will allow us to visualise these differences:

ggplot(data = penguins) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g, colour = species)) +
scale_colour_brewer(palette = "Dark2") +
labs(x = "flipper length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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Species is clearly strongly associated with both body mass and flipper length, although the
gradient of these associations appear similar across species.

This scatterplot could be extended to investigate whether these trends differ between sexes.
Adding an additional variable to the previous scatterplot may overload it, making the relation-
ships difficult to interpret. Instead, we could facet the graphs, showing a scatterplot per sex
on the same graph area, with the same axes:

ggplot(data = na.omit(penguins)) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g, colour = species)) +
scale_colour_brewer(palette = "Dark2") +
labs(x = "flipper length (mm)", y = "body mass (g)") +
facet_wrap(vars(sex), ncol = 2) +
theme_light(base_size = 12)
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Here, it appears that the male pengions are larger on average than the females. The relation-
ships between body mass, flipper length and species appear equal between sexes.

The data also contains information about penguins’ bill length and depth which may also by
a predictor of body mass. These can be plotted against body mass in a scatterplot, replacing
flipper length, or could be included into the original scatterplot by using a continuous colour
scale.

ggplot(data = penguins) +
geom_point(aes(x = bill_length_mm, y = body_mass_g)) +
labs(x = "bill length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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ggplot(data = penguins) +
geom_point(aes(x = flipper_length_mm, y = body_mass_g,

colour = bill_length_mm)) +
scale_colour_viridis_c(name = "bill length (mm)") +
labs(x = "flipper length (mm)", y = "body mass (g)") +
theme_light(base_size = 12)
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There appears to be a positive association between bill length and body mass, but it is not as
strong as the one between flipper length and body mass.

B.2 Exercise 2

Using everything you have learned up to this point, use linear regression to answer the research
question posed earlier:

Is body mass of penguins in the Palmer Archipelago related to their flipper size?

Solution

From our research question, we know that our model must have body mass as the outcome
and flipper length as an explanatory variable. Previous exploratory analysis showed that sex
and bill length were also associated to body mass. We can add these variables into a linear
model and consider whether it improves the model fit. We may also try removing species from
the model as this appeared to lead to heteroskedasticity in the residuals:

lm_flipper <- lm(body_mass_g ~ flipper_length_mm, data = penguins) 1

lm_flipper_sex <- lm(body_mass_g ~ flipper_length_mm + sex,
data = penguins) 2
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lm_flipper_bill <- lm(body_mass_g ~ flipper_length_mm +
bill_length_mm, data = penguins) 3

lm_full <- lm(body_mass_g ~ flipper_length_mm + sex +
bill_length_mm, data = penguins) 4

1 We will begin with the simplest possible model for comparison, one containing just body
mass and flipper length.

2 A model with sex instead of species which was found to be related to body mass.
3 Add bill length to see if this improves the initial model.
4 A model with all potential exploratory variables (besides species).

We can compare these models in various ways, including the adjusted R-squared, information
criterions, and prediction errors. Below is a table containing these comparisons for each
model.

model adjusted R-squared AIC RMSE
flipper only 0.7582837 5062.855 393.1236
flipper + sex 0.8046607 4862.484 354.2762
flipper + bill length 0.7585415 5063.482 392.3357
flipper + bill length + sex 0.8047466 4863.327 353.6612

The model containing flipper length and sex slightly outperformed the full momdel according
to the adjusted R-squared and AIC, but had a slightly lower RMSE. As the bill length is not
important to our research question and the model is not being used for prediction, we will
choose the simplest possible model and remove bill length.

Before we use this model to answer our research question, we must ensure that the model is
valid. Remember, the assumptions we need to check are Linearity, Independent covariates,
Normally distributed residuals, with Equal variance.

vif(lm_flipper_sex)

flipper_length_mm sex
1.069646 1.069646

All VIFs are very low, indicating no issues with multicollinearity.
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lm_flipper_sex_resid <- lm_flipper_sex$model %>%
mutate(residuals = residuals(lm_full))

ggplot(data = lm_flipper_sex_resid) + 1

geom_histogram(aes(x = residuals), colour = "black", fill = "grey45") +
geom_vline(xintercept = 0, linetype = "dashed") +
theme_light(base_size = 12)

3 Plot the residuals against each covariate to check the linearity assumption.
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ggplot(data = lm_flipper_sex_resid) + 2

geom_point(aes(x = body_mass_g, y = residuals)) +
geom_hline(yintercept = 0, colour = "darkorange3") +
labs(x = "body mass (g)", y = "residuals") +
theme_light(base_size = 12)
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ggplot(data = lm_flipper_sex_resid) + 3

geom_point(aes(x = flipper_length_mm, y = residuals)) +
geom_hline(yintercept = 0, colour = "darkorange3") +
labs(x = "flipper length (mm)", y = "residuals") +
theme_light(base_size = 12)
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ggplot(data = lm_flipper_sex_resid) +
geom_point(aes(x = sex, y = residuals)) +
geom_hline(yintercept = 0, colour = "darkorange3") +
labs(x = "sex", y = "residuals") +
theme_light(base_size = 12)
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The residuals are approximately normal, their variance is approximately constant, and there
is no evidence to suggest that the linearity assumption would not be valid. Therefore, we can
use this model to answer our research question.

summary(lm_flipper_sex)

Call:
lm(formula = body_mass_g ~ flipper_length_mm + sex, data = penguins)

Residuals:
Min 1Q Median 3Q Max

-910.28 -243.89 -2.94 238.85 1067.73

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5410.300 285.798 -18.931 < 2e-16 ***
flipper_length_mm 46.982 1.441 32.598 < 2e-16 ***
sexmale 347.850 40.342 8.623 2.78e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 355.9 on 330 degrees of freedom
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(11 observations deleted due to missingness)
Multiple R-squared: 0.8058, Adjusted R-squared: 0.8047
F-statistic: 684.8 on 2 and 330 DF, p-value: < 2.2e-16

confint(lm_flipper_sex)

2.5 % 97.5 %
(Intercept) -5972.51535 -4848.08510
flipper_length_mm 44.14697 49.81738
sexmale 268.49120 427.20930

Based on these results, we can infer that there is a significantly positive association between
flipper length and body mass of the Palmer penguins. On average, body mass is expected to
increase by 46.98g for every 1mm increase in flipper length, We are 95% confident that this
increase is between 44.15g and 49.82g in the target population.

B.3 Exercise 3

Using the data, fit an appropriate model to answer the research question:

Is cancer mortality associated with poverty levels in the USA?

Ensure that the mode contains any variables you consider necessary, and check that it is valid
before using it to answer the research question.

Solution

The model we require will have cancer mortality (number of deaths with population as an
offset) as an outcome and must contain a measure of poverty to answer the research question.
Other variables from the data that may be important include the average age of a county,
their access to medicare, and possibly income (although this will likely be highly correlated to
poverty).

First, we should explore the data and plot these variables to understand their bivariate rela-
tionships. Rather than do this manually, we could use the ggpair function from the GGally
package:
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library(GGally)

cancer_reg_clean <- cancer_reg %>%
mutate(mortality_rate = (number_death / population_2015) * 10^5,

offset_rate = log(population_2015 / 10^5)) %>%
select(mortality_rate, number_death, population_2015, age, income, poverty,

medicare, offset_rate)

cancer_reg_clean %>%
select(-number_death, -population_2015, -offset_rate) %>%
ggpairs()

Corr:

0.699***

Corr:

−0.448***

Corr:
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Corr:
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As expected, both income and medicare access are highly correlated to poverty. Although
this does not necessarily make them dependent on each other, the interpretation of mode
coefficients can be complicated by their inclusion. To remove this issue, we can add age to the
original model to see if it improves the fit.

pois_pov <- glm(number_death ~ poverty + offset(offset_rate),
data = cancer_reg_clean, family = poisson)

pois_pov_age <- glm(number_death ~ poverty + age + offset(offset_rate),
data = cancer_reg_clean, family = poisson)
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The adjusted R-squared measure is only appropriate for linear models. However, we can still
use information criterions and prediction errors to compare models:

model AIC RMSE
poverty only 7041.657 192.3616
poverty + age 4330.177 192.3497

Adding age appears to vastly improve the AIC but only slightly improve prediction according
to the RMSE. The poisson model containing just poverty showed strong evidence of overdis-
persion, therefore we must check this model to find whether the addition of age has removed
the issue:

dispersiontest(pois_pov_age, trafo = 1)

Overdispersion test

data: pois_pov_age
z = 4.0437, p-value = 2.63e-05
alternative hypothesis: true alpha is greater than 0
sample estimates:

alpha
1.141831

Although the dispersion parameter is lower than the poverty only model, there is still evidence
of overdispersion. Therefore, a quasipoisson model may be more appropriate:

quasi_pov_age <- glm(number_death ~ poverty + age + offset(offset_rate),
data = cancer_reg_clean, family = quasipoisson)

summary(quasi_pov_age)

Call:
glm(formula = number_death ~ poverty + age + offset(offset_rate),

family = quasipoisson, data = cancer_reg_clean)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.134120 0.058920 53.19 <2e-16 ***
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poverty 0.018326 0.001076 17.02 <2e-16 ***
age 0.047598 0.001326 35.89 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 2.175137)

Null deviance: 4101.4 on 526 degrees of freedom
Residual deviance: 1174.7 on 524 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

The summary of quasipoisson models contains an estimate of the dispersion parameter.
Quasipoisson and Poisson models are equivalent when the dispersion parameter is 1. As the
parameter was estimated above that, this is a clear indication the poisson model was not
appropriate for this data.
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C Mathematical Derivation of OLS

The coefficient values for simple linear regression can be derived using a procedure known as
Ordinary Least Squares (OLS).

For an assumed model:

𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽1 + 𝜖𝑖

We can generate predictions in the form:

̂𝑦𝑖 = 𝛽0 + 𝑥𝑖𝛽𝑖

The residuals for our model 𝜖𝑖 = 𝑦𝑖 − ̂𝑦𝑖 can be written as:

𝜖𝑖 = 𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖

To find the sum of squared residuals (RSS) for all records we have:

𝑁
∑
𝑖=1

𝜖2
𝑖 =

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2

We want to find 𝛽0 and 𝛽1 such that we minimise the RSS. This occurs when we set the partial
derivative with respect to both 𝛽0 and 𝛽1 to zero.

𝜕
𝜕𝛽0

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2 = 0

𝜕
𝜕𝛽1

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2 = 0

This gives us:
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−2
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0 (C.1)

−2𝑥𝑖
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖) = 0 (C.2)

From Equation C.1 we can ignore the constant -2 and redistribute the summation.

𝑁
∑
𝑖=1

𝑦𝑖 −
𝑁

∑
𝑖=1

𝛽0 −
𝑁

∑
𝑖=1

𝛽1𝑥𝑖 = 0

Giving:

𝑁 ̄𝑦 − 𝑁𝛽0 − 𝑁𝛽𝑖 ̄𝑥 = 0

Which simplifies to:

𝛽0 = ̄𝑦 − 𝛽1 ̄𝑥 (C.3)

From Equation C.2 we can ignore the -2 and distribute the 𝑥𝑖:

𝑁
∑
𝑖=1

𝑦𝑖𝑥𝑖 − 𝛽0𝑥𝑖 − 𝛽1𝑥2
𝑖 = 0

Substituting Equation C.3 and distributing the summation we get:

𝑁
∑
𝑖=1

𝑥𝑖𝑦𝑖 − ̄𝑦
𝑁

∑
𝑖=1

𝑥𝑖 + 𝛽1 ̄𝑥
𝑁

∑
𝑖=1

𝑥𝑖 − 𝛽1
𝑁

∑
𝑖=1

𝑥2
𝑖 = 0

Solving for 𝛽1 gives:

𝛽1 = ∑𝑁
𝑖=1 𝑥𝑖𝑦𝑖 − 𝑁 ̄𝑥 ̄𝑦

∑𝑁
𝑖=1 𝑥2

𝑖 − 𝑁 ̄𝑥2

Which simplifies to:
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𝛽1 = ∑𝑁
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

∑𝑁
𝑖=1(𝑥𝑖 − ̄𝑥)

(C.4)

Now we have a closed-form expression for both 𝛽0 Equation C.3 and 𝛽1 Equation C.4.

Note

This can extend to more than simple linear regression but would involve an expression
in matrix notation. For more complex regression models, other methods are used such
as maximum likelihood estimation (MLE). This is beyond the scope of this course.

Let’s try to manually verify this by calculating the regression coefficients by hand. We can
compare this to the R output in Section 3.1.

library(dplyr)
library(palmerpenguins)

dat <- penguins |>
select(body_mass_g, flipper_length_mm) |>
na.omit()

x <- dat$flipper_length_mm
y <- dat$body_mass_g

b_1 <- sum((x - mean(x)) * (y - mean(y))) / sum((x - mean(x))^2)
b_0 <- mean(y) - b_1 * mean(x)

b_0

[1] -5780.831

b_1

[1] 49.68557
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D Setup

D.1 Setting up R

To get started, ensure you have a recent version or R and RStudio installed.

D.1.1 Step 1: Install R

To install R head to https://cran.rstudio.com/ and follow the instructions for your operating
system.

D.1.2 Step 2: Install RStudio

Next, install RStudio Desktop IDE at https://posit.co/download/rstudio-desktop/.

D.1.3 Packages

To install the required packages, we run the install.packages("packagename") function.

# Install the required R packages for our analysis (first time use only)
install.packages("tidyverse")
install.packages("palmerpenguins")
install.packages("Metrics")
install.packages("car")
install.packages("skimr")
install.packages("AER")

Note

The command install.packages() is only required the first time loading a new package
or following any substantial updates. The library() command must be run every time
you start an R session. To save potential issues arising from unloaded packages, put any
library() commands at the beginning of any script file.
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You should be able to now run the following commands:

# Load the installed packages at the start of each session
library(tidyverse)
library(palmerpenguins)
library(Metrics)
library(car)
library(skimr)
library(AER)
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